Multi-Agents AI System
Multi-Agents AI System
In this example, let us build a simple multi-agent system where each agent is represented by a branch in the BranchManagerWrapper. The agents will collaboratively work on a task, occasionally merging their progress.
1
Install the dependencies
Copy
pipx install incribo numpy typing
2
Install the dependencies
multi_agents.py
Copy
from incribo import BranchManagerWrapper, EmbeddingStreamer, EmbeddingComparator, Embedding, ConsistencyManagerWrapper
import numpy as np
from typing import List, Dict
import random
3
Install the dependencies
multi_agents.py
Copy
# Add some product details
products = {
1: {"name": "Laptop", "category": "Electronics", "price": 999, "tags": ["computer", "work", "portable"]},
2: {"name": "Smartphone", "category": "Electronics", "price": 699, "tags": ["mobile", "communication"]},
3: {"name": "Running Shoes", "category": "Sports", "price": 89, "tags": ["fitness", "outdoor"]},
4: {"name": "Coffee Maker", "category": "Home", "price": 49, "tags": ["kitchen", "appliance"]},
5: {"name": "Novel", "category": "Books", "price": 15, "tags": ["fiction", "entertainment"]}
}
# Simulate user behavior
user_behaviors = {
"view": [1, 2, 1, 3, 2, 4],
"purchase": [1],
"cart": [2, 4],
"search": ["laptop", "phone", "coffee"]
}
4
Initialize the embedding and agent functions
Copy
# Embedding function
def product_embedding(product: Dict) -> np.ndarray:
# Simple embedding: [price, len(tags), category_hash, name_length]
return np.array([
product['price'] / 1000, # Normalize price
len(product['tags']),
hash(product['category']) % 10,
len(product['name'])
], dtype=np.float32)
# Initialize our components
branch_manager = BranchManagerWrapper(np.zeros(4).tolist()) # 4-dimensional embedding
streamer = EmbeddingStreamer(product_embedding)
comparator = EmbeddingComparator(None)
consistency_manager = ConsistencyManagerWrapper(np.zeros(4).tolist())
# Agent functions
def view_history_agent(behaviors: Dict[str, List]) -> np.ndarray:
viewed_products = [products[pid] for pid in behaviors['view']]
return np.mean([product_embedding(p) for p in viewed_products], axis=0)
def purchase_history_agent(behaviors: Dict[str, List]) -> np.ndarray:
purchased_products = [products[pid] for pid in behaviors['purchase']]
return np.mean([product_embedding(p) for p in purchased_products], axis=0) if purchased_products else np.zeros(4)
def cart_analysis_agent(behaviors: Dict[str, List]) -> np.ndarray:
cart_products = [products[pid] for pid in behaviors['cart']]
return np.mean([product_embedding(p) for p in cart_products], axis=0) if cart_products else np.zeros(4)
def search_intent_agent(behaviors: Dict[str, List]) -> np.ndarray:
# Simplified: just use the length of search terms as a feature
return np.array([0, 0, 0, np.mean([len(term) for term in behaviors['search']])], dtype=np.float32)
5
Create branches
multi_agents.py
Copy
# Create branches for each agent
view_branch = branch_manager.create_branch
(view_history_agent(user_behaviors).tolist())
purchase_branch = branch_manager.create_branch
(purchase_history_agent(user_behaviors).tolist())
cart_branch = branch_manager.create_branch
(cart_analysis_agent(user_behaviors).tolist())
search_branch = branch_manager.create_branch
(search_intent_agent(user_behaviors).tolist())
6
Simulate recommendation process
multi_agents.py
Copy
# Simulate recommendation process
for day in range(5): # Simulate 5 days of recommendations
print(f"\nDay {day + 1} Recommendations:")
# Update user behaviors (insert data from actual user interactions)
user_behaviors['view'].append(random.choice(list(products.keys())))
if random.random() > 0.8: # 20% chance of purchase
user_behaviors['purchase'].append(random.choice(user_behaviors['view'][-3:]))
if random.random() > 0.7: # 30% chance of adding to cart
user_behaviors['cart'].append(random.choice(list(products.keys())))
user_behaviors['search'].append(random.choice(['book', 'electronics', 'sports', 'kitchen']))
# Agents work and update their branches
branch_manager.switch_branch(view_branch)
branch_manager.commit(view_history_agent(user_behaviors).tolist())
branch_manager.switch_branch(purchase_branch)
branch_manager.commit(purchase_history_agent(user_behaviors).tolist())
branch_manager.switch_branch(cart_branch)
branch_manager.commit(cart_analysis_agent(user_behaviors).tolist())
branch_manager.switch_branch(search_branch)
branch_manager.commit(search_intent_agent(user_behaviors).tolist())
# Merge insights from view and purchase history
merged_view_purchase = branch_manager.merge_branches(view_branch, purchase_branch)
# Compare merged insights with cart analysis
comparator.add_embedding(Embedding(branch_manager.get_active_vector(), "ViewPurchase"))
branch_manager.switch_branch(cart_branch)
comparator.add_embedding(Embedding(branch_manager.get_active_vector(), "Cart"))
best_insight = comparator.get_best_model()
print(f"Best insight source: {best_insight}")
# Use the best insight to generate recommendations
if best_insight == "ViewPurchase":
branch_manager.switch_branch(merged_view_purchase)
else:
branch_manager.switch_branch(cart_branch)
recommendation_vector = branch_manager.get_active_vector()
# Find the most similar product to recommend
similarities = {pid: np.dot(product_embedding(p), recommendation_vector)
for pid, p in products.items()}
recommended_product = max(similarities, key=similarities.get)
print(f"Recommended product: {products[recommended_product]['name']}")
# Update the consistent state with the latest recommendation
consistency_manager.update(recommendation_vector)
# Final state
print("\nFinal Recommendation State:")
print(f"Consistent recommendation vector: {consistency_manager.get_vector()}")